cs.AI updates on arXiv.org 15小时前
Quantum Machine Learning in Multi-Qubit Phase-Space Part I: Foundations
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于相空间动力学的量子机器学习方法,通过将量子状态编码为近似概率函数,解决了经典模拟中希尔伯特空间指数增长的问题,为量子机器学习提供了新的途径。

arXiv:2507.12117v1 Announce Type: cross Abstract: Quantum machine learning (QML) seeks to exploit the intrinsic properties of quantum mechanical systems, including superposition, coherence, and quantum entanglement for classical data processing. However, due to the exponential growth of the Hilbert space, QML faces practical limits in classical simulations with the state-vector representation of quantum system. On the other hand, phase-space methods offer an alternative by encoding quantum states as quasi-probability functions. Building on prior work in qubit phase-space and the Stratonovich-Weyl (SW) correspondence, we construct a closed, composable dynamical formalism for one- and many-qubit systems in phase-space. This formalism replaces the operator algebra of the Pauli group with function dynamics on symplectic manifolds, and recasts the curse of dimensionality in terms of harmonic support on a domain that scales linearly with the number of qubits. It opens a new route for QML based on variational modelling over phase-space.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子机器学习 相空间方法 动力学模型
相关文章