cs.AI updates on arXiv.org 16小时前
PATCH: a deep learning method to assess heterogeneity of artistic practice in historical paintings
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为PATCH的机器学习方法,可识别艺术家创作风格,应用于艺术史研究,为理解艺术家创作过程提供新视角。

arXiv:2502.01912v3 Announce Type: replace-cross Abstract: The history of art has seen significant shifts in the manner in which artworks are created, making understanding of creative processes a central question in technical art history. In the Renaissance and Early Modern period, paintings were largely produced by master painters directing workshops of apprentices who often contributed to projects. The masters varied significantly in artistic and managerial styles, meaning different combinations of artists and implements might be seen both between masters and within workshops or even individual canvases. Information on how different workshops were managed and the processes by which artworks were created remains elusive. Machine learning methods have potential to unearth new information about artists' creative processes by extending the analysis of brushwork to a microscopic scale. Analysis of workshop paintings, however, presents a challenge in that documentation of the artists and materials involved is sparse, meaning external examples are not available to train networks to recognize their contributions. Here we present a novel machine learning approach we call pairwise assignment training for classifying heterogeneity (PATCH) that is capable of identifying individual artistic practice regimes with no external training data, or "ground truth." The method achieves unsupervised results by supervised means, and outperforms both simple statistical procedures and unsupervised machine learning methods. We apply this method to two historical paintings by the Spanish Renaissance master, El Greco: The Baptism of Christ and Christ on the Cross with Landscape, and our findings regarding the former potentially challenge previous work that has assigned the painting to workshop members. Further, the results of our analyses create a measure of heterogeneity of artistic practice that can be used to characterize artworks across time and space.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

艺术史 机器学习 艺术家风格 创作过程 PATCH方法
相关文章