cs.AI updates on arXiv.org 15小时前
Tackling the Abstraction and Reasoning Corpus with Vision Transformers: the Importance of 2D Representation, Positions, and Objects
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨Vision Transformer在视觉推理任务ARC中的表现,发现其存在表示缺陷,并提出ViTARC模型以增强视觉推理能力。

arXiv:2410.06405v2 Announce Type: replace-cross Abstract: The Abstraction and Reasoning Corpus (ARC) is a popular benchmark focused on visual reasoning in the evaluation of Artificial Intelligence systems. In its original framing, an ARC task requires solving a program synthesis problem over small 2D images using a few input-output training pairs. In this work, we adopt the recently popular data-driven approach to the ARC and ask whether a Vision Transformer (ViT) can learn the implicit mapping, from input image to output image, that underlies the task. We show that a ViT -- otherwise a state-of-the-art model for images -- fails dramatically on most ARC tasks even when trained on one million examples per task. This points to an inherent representational deficiency of the ViT architecture that makes it incapable of uncovering the simple structured mappings underlying the ARC tasks. Building on these insights, we propose ViTARC, a ViT-style architecture that unlocks some of the visual reasoning capabilities required by the ARC. Specifically, we use a pixel-level input representation, design a spatially-aware tokenization scheme, and introduce a novel object-based positional encoding that leverages automatic segmentation, among other enhancements. Our task-specific ViTARC models achieve a test solve rate close to 100% on more than half of the 400 public ARC tasks strictly through supervised learning from input-output grids. This calls attention to the importance of imbuing the powerful (Vision) Transformer with the correct inductive biases for abstract visual reasoning that are critical even when the training data is plentiful and the mapping is noise-free. Hence, ViTARC provides a strong foundation for future research in visual reasoning using transformer-based architectures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Vision Transformer 视觉推理 ARC任务 ViTARC模型 数据驱动
相关文章