cs.AI updates on arXiv.org 15小时前
Native-AI Empowered Scalable Architectures and Solutions for Future Non-Terrestrial Networks: An Overview
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了非地面网络(NTN)与开放无线接入网络(ORAN)的结合,针对NTN在DevOps生命周期中的挑战,提出了基于ORAN的NTN框架,并展望了未来研究方向。

arXiv:2507.11935v1 Announce Type: cross Abstract: As the path toward 6G networks is being charted, the emerging applications have motivated evolutions of network architectures to realize the efficient, reliable, and flexible wireless networks. Among the potential architectures, the non-terrestrial network (NTN) and open radio access network (ORAN) have received increasing interest from both academia and industry. Although the deployment of NTNs ensures coverage, enhances spectral efficiency, and improves the resilience of wireless networks. The high altitude and mobility of NTN present new challenges in the development and operations (DevOps) lifecycle, hindering intelligent and scalable network management due to the lack of native artificial intelligence (AI) capability. With the advantages of ORAN in disaggregation, openness, virtualization, and intelligence, several works propose integrating ORAN principles into the NTN, focusing mainly on ORAN deployment options based on transparent and regenerative systems. However, a holistic view of how to effectively combine ORAN and NTN throughout the DevOps lifecycle is still missing, especially regarding how intelligent ORAN addresses the scalability challenges in NTN. Motivated by this, in this paper, we first provide the background knowledge about ORAN and NTN, outline the state-of-the-art research on ORAN for NTNs, and present the DevOps challenges that motivate the adoption of ORAN solutions. We then propose the ORAN-based NTN framework, discussing its features and architectures in detail. These include the discussion about flexible fronthaul split, RAN intelligent controllers (RICs) enhancement for distributed learning, scalable deployment architecture, and multi-domain service management. Finally, the future research directions, including combinations of the ORAN-based NTN framework and other enabling technologies and schemes, as well as the candidate use cases, are highlighted.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ORAN NTN 网络架构 DevOps 人工智能
相关文章