cs.AI updates on arXiv.org 15小时前
Fragment size density estimator for shrinkage-induced fracture based on a physics-informed neural network
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于神经网络的求解积分微分方程新方法,有效降低计算成本,提高蒙特卡洛模拟中密度函数的评估效率,验证结果表明方法在计算效率和预测可靠性方面具有优势。

arXiv:2507.11799v1 Announce Type: cross Abstract: This paper presents a neural network (NN)-based solver for an integro-differential equation that models shrinkage-induced fragmentation. The proposed method directly maps input parameters to the corresponding probability density function without numerically solving the governing equation, thereby significantly reducing computational costs. Specifically, it enables efficient evaluation of the density function in Monte Carlo simulations while maintaining accuracy comparable to or even exceeding that of conventional finite difference schemes. Validatation on synthetic data demonstrates both the method's computational efficiency and predictive reliability. This study establishes a foundation for the data-driven inverse analysis of fragmentation and suggests the potential for extending the framework beyond pre-specified model structures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

神经网络 积分微分方程 计算效率 蒙特卡洛模拟 数据驱动
相关文章