cs.AI updates on arXiv.org 15小时前
Cluster Contrast for Unsupervised Visual Representation Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

CueCo是一种新的无监督视觉表示学习方法,结合对比学习和聚类方法的优势,同时散射和排列特征表示,在CIFAR-10、CIFAR-100和ImageNet-100上取得高分类准确率。

arXiv:2507.12359v1 Announce Type: cross Abstract: We introduce Cluster Contrast (CueCo), a novel approach to unsupervised visual representation learning that effectively combines the strengths of contrastive learning and clustering methods. Inspired by recent advancements, CueCo is designed to simultaneously scatter and align feature representations within the feature space. This method utilizes two neural networks, a query and a key, where the key network is updated through a slow-moving average of the query outputs. CueCo employs a contrastive loss to push dissimilar features apart, enhancing inter-class separation, and a clustering objective to pull together features of the same cluster, promoting intra-class compactness. Our method achieves 91.40% top-1 classification accuracy on CIFAR-10, 68.56% on CIFAR-100, and 78.65% on ImageNet-100 using linear evaluation with a ResNet-18 backbone. By integrating contrastive learning with clustering, CueCo sets a new direction for advancing unsupervised visual representation learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CueCo 对比学习 聚类方法 视觉表示学习 无监督学习
相关文章