arXiv:2507.11729v1 Announce Type: cross Abstract: Forecasting load in power transmission networks is essential across various hierarchical levels, from the system level down to individual points of delivery (PoD). While intuitive and locally accurate, traditional local forecasting models (LFMs) face significant limitations, particularly in handling generalizability, overfitting, data drift, and the cold start problem. These methods also struggle with scalability, becoming computationally expensive and less efficient as the network's size and data volume grow. In contrast, global forecasting models (GFMs) offer a new approach to enhance prediction generalizability, scalability, accuracy, and robustness through globalization and cross-learning. This paper investigates global load forecasting in the presence of data drifts, highlighting the impact of different modeling techniques and data heterogeneity. We explore feature-transforming and target-transforming models, demonstrating how globalization, data heterogeneity, and data drift affect each differently. In addition, we examine the role of globalization in peak load forecasting and its potential for hierarchical forecasting. To address data heterogeneity and the balance between globality and locality, we propose separate time series clustering (TSC) methods, introducing model-based TSC for feature-transforming models and new weighted instance-based TSC for target-transforming models. Through extensive experiments on a real-world dataset of Alberta's electricity load, we demonstrate that global target-transforming models consistently outperform their local counterparts, especially when enriched with global features and clustering techniques. In contrast, global feature-transforming models face challenges in balancing local and global dynamics, often requiring TSC to manage data heterogeneity effectively.