arXiv:2507.11702v1 Announce Type: cross Abstract: Railroad traffic disruption as a result of leaf-fall cost the UK rail industry over 300 million per year and measures to mitigate such disruptions are employed on a large scale, with 1.67 million kilometers of track being treated in the UK in 2021 alone. Therefore, the ability to anticipate the timing of leaf-fall would offer substantial benefits for rail network operators, enabling the efficient scheduling of such mitigation measures. However, current methodologies for predicting leaf-fall exhibit considerable limitations in terms of scalability and reliability. This study endeavors to devise a prediction system that leverages specialized prediction methods and the latest satellite data sources to generate both scalable and reliable insights into leaf-fall timings. An LSTM network trained on ground-truth leaf-falling data combined with multispectral and meteorological satellite data demonstrated a root-mean-square error of 6.32 days for predicting the start of leaf-fall and 9.31 days for predicting the end of leaf-fall. The model, which improves upon previous work on the topic, offers promising opportunities for the optimization of leaf mitigation measures in the railway industry and the improvement of our understanding of complex ecological systems.