cs.AI updates on arXiv.org 15小时前
Interpretable Prediction of Lymph Node Metastasis in Rectal Cancer MRI Using Variational Autoencoders
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出使用变分自编码器(VAE)作为特征编码模型,以提高直肠癌淋巴结转移诊断的准确性。通过在内部MRI数据集上测试,该模型实现了优于现有方法的性能。

arXiv:2507.11638v1 Announce Type: cross Abstract: Effective treatment for rectal cancer relies on accurate lymph node metastasis (LNM) staging. However, radiological criteria based on lymph node (LN) size, shape and texture morphology have limited diagnostic accuracy. In this work, we investigate applying a Variational Autoencoder (VAE) as a feature encoder model to replace the large pre-trained Convolutional Neural Network (CNN) used in existing approaches. The motivation for using a VAE is that the generative model aims to reconstruct the images, so it directly encodes visual features and meaningful patterns across the data. This leads to a disentangled and structured latent space which can be more interpretable than a CNN. Models are deployed on an in-house MRI dataset with 168 patients who did not undergo neo-adjuvant treatment. The post-operative pathological N stage was used as the ground truth to evaluate model predictions. Our proposed model 'VAE-MLP' achieved state-of-the-art performance on the MRI dataset, with cross-validated metrics of AUC 0.86 +/- 0.05, Sensitivity 0.79 +/- 0.06, and Specificity 0.85 +/- 0.05. Code is available at: https://github.com/benkeel/Lymph_Node_Classification_MIUA.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

VAE模型 直肠癌 淋巴结转移 诊断 MRI数据
相关文章