cs.AI updates on arXiv.org 15小时前
JSQA: Speech Quality Assessment with Perceptually-Inspired Contrastive Pretraining Based on JND Audio Pairs
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出JSQA,一种基于感知对比学习的语音质量评估框架,通过预训练和微调提高评估准确度。

arXiv:2507.11636v1 Announce Type: cross Abstract: Speech quality assessment (SQA) is often used to learn a mapping from a high-dimensional input space to a scalar that represents the mean opinion score (MOS) of the perceptual speech quality. Learning such a mapping is challenging for many reasons, but largely because MOS exhibits high levels of inherent variance due to perceptual and experimental-design differences. Many solutions have been proposed, but many approaches do not properly incorporate perceptual factors into their learning algorithms (beyond the MOS label), which could lead to unsatisfactory results. To this end, we propose JSQA, a two-stage framework that pretrains an audio encoder using perceptually-guided contrastive learning on just noticeable difference (JND) pairs, followed by fine-tuning for MOS prediction. We first generate pairs of audio data within JND levels, which are then used to pretrain an encoder to leverage perceptual quality similarity information and map it into an embedding space. The JND pairs come from clean LibriSpeech utterances that are mixed with background noise from CHiME-3, at different signal-to-noise ratios (SNRs). The encoder is later fine-tuned with audio samples from the NISQA dataset for MOS prediction. Experimental results suggest that perceptually-inspired contrastive pretraining significantly improves the model performance evaluated by various metrics when compared against the same network trained from scratch without pretraining. These findings suggest that incorporating perceptual factors into pretraining greatly contributes to the improvement in performance for SQA.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语音质量评估 对比学习 感知模型
相关文章