cs.AI updates on arXiv.org 15小时前
Landmark Detection for Medical Images using a General-purpose Segmentation Model
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用YOLO模型生成地标边界框,辅助SAM模型进行骨科影像地标分割,显著提升了地标检测的准确性。

arXiv:2507.11551v1 Announce Type: cross Abstract: Radiographic images are a cornerstone of medical diagnostics in orthopaedics, with anatomical landmark detection serving as a crucial intermediate step for information extraction. General-purpose foundational segmentation models, such as SAM (Segment Anything Model), do not support landmark segmentation out of the box and require prompts to function. However, in medical imaging, the prompts for landmarks are highly specific. Since SAM has not been trained to recognize such landmarks, it cannot generate accurate landmark segmentations for diagnostic purposes. Even MedSAM, a medically adapted variant of SAM, has been trained to identify larger anatomical structures, such as organs and their parts, and lacks the fine-grained precision required for orthopaedic pelvic landmarks. To address this limitation, we propose leveraging another general-purpose, non-foundational model: YOLO. YOLO excels in object detection and can provide bounding boxes that serve as input prompts for SAM. While YOLO is efficient at detection, it is significantly outperformed by SAM in segmenting complex structures. In combination, these two models form a reliable pipeline capable of segmenting not only a small pilot set of eight anatomical landmarks but also an expanded set of 72 landmarks and 16 regions with complex outlines, such as the femoral cortical bone and the pelvic inlet. By using YOLO-generated bounding boxes to guide SAM, we trained the hybrid model to accurately segment orthopaedic pelvic radiographs. Our results show that the proposed combination of YOLO and SAM yields excellent performance in detecting anatomical landmarks and intricate outlines in orthopaedic pelvic radiographs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

YOLO SAM 骨科影像 地标分割 模型结合
相关文章