arXiv:2507.11543v1 Announce Type: cross Abstract: This paper surveys the use of Generative AI tools, such as ChatGPT and Claude, in computer science education, focusing on key aspects of accuracy, authenticity, and assessment. Through a literature review, we highlight both the challenges and opportunities these AI tools present. While Generative AI improves efficiency and supports creative student work, it raises concerns such as AI hallucinations, error propagation, bias, and blurred lines between AI-assisted and student-authored content. Human oversight is crucial for addressing these concerns. Existing literature recommends adopting hybrid assessment models that combine AI with human evaluation, developing bias detection frameworks, and promoting AI literacy for both students and educators. Our findings suggest that the successful integration of AI requires a balanced approach, considering ethical, pedagogical, and technical factors. Future research may explore enhancing AI accuracy, preserving academic integrity, and developing adaptive models that balance creativity with precision.