cs.AI updates on arXiv.org 16小时前
BuildEvo: Designing Building Energy Consumption Forecasting Heuristics via LLM-driven Evolution
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为BuildEvo的新框架,利用大型语言模型自动设计有效且可解释的能源预测启发式方法,显著提升建筑能耗预测的准确性和泛化能力。

arXiv:2507.12207v1 Announce Type: new Abstract: Accurate building energy forecasting is essential, yet traditional heuristics often lack precision, while advanced models can be opaque and struggle with generalization by neglecting physical principles. This paper introduces BuildEvo, a novel framework that uses Large Language Models (LLMs) to automatically design effective and interpretable energy prediction heuristics. Within an evolutionary process, BuildEvo guides LLMs to construct and enhance heuristics by systematically incorporating physical insights from building characteristics and operational data (e.g., from the Building Data Genome Project 2). Evaluations show BuildEvo achieves state-of-the-art performance on benchmarks, offering improved generalization and transparent prediction logic. This work advances the automated design of robust, physically grounded heuristics, promoting trustworthy models for complex energy systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

建筑能耗预测 大型语言模型 启发式方法
相关文章