cs.AI updates on arXiv.org 16小时前
ClarifAI: Enhancing AI Interpretability and Transparency through Case-Based Reasoning and Ontology-Driven Approach for Improved Decision-Making
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为Clarity and Reasoning Interface for Artificial Intelligence(ClarifAI)的新型方法,旨在增强人工智能在决策过程中的透明度和可解释性。该方法结合案例推理(CBR)和本体驱动方法,旨在满足人工智能应用中各方对解释的复杂需求,并详细阐述了其理论基础、设计原则和架构。

arXiv:2507.11733v1 Announce Type: new Abstract: This Study introduces Clarity and Reasoning Interface for Artificial Intelligence(ClarifAI), a novel approach designed to augment the transparency and interpretability of artificial intelligence (AI) in the realm of improved decision making. Leveraging the Case-Based Reasoning (CBR) methodology and integrating an ontology-driven approach, ClarifAI aims to meet the intricate explanatory demands of various stakeholders involved in AI-powered applications. The paper elaborates on ClarifAI's theoretical foundations, combining CBR and ontologies to furnish exhaustive explanation mechanisms. It further elaborates on the design principles and architectural blueprint, highlighting ClarifAI's potential to enhance AI interpretability across different sectors and its applicability in high-stake environments. This research delineates the significant role of ClariAI in advancing the interpretability of AI systems, paving the way for its deployment in critical decision-making processes.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 可解释性 案例推理 本体 决策过程
相关文章