cs.AI updates on arXiv.org 19小时前
EditGen: Harnessing Cross-Attention Control for Instruction-Based Auto-Regressive Audio Editing
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究利用跨注意力控制提高自回归模型中的音频编辑效率,通过借鉴图像编辑方法,开发了一种类似Prompt-to-Prompt的编辑引导方法,结合扩散策略,支持细节编辑,并通过实验验证了其优越性。

arXiv:2507.11096v1 Announce Type: cross Abstract: In this study, we investigate leveraging cross-attention control for efficient audio editing within auto-regressive models. Inspired by image editing methodologies, we develop a Prompt-to-Prompt-like approach that guides edits through cross and self-attention mechanisms. Integrating a diffusion-based strategy, influenced by Auffusion, we extend the model's functionality to support refinement edits, establishing a baseline for prompt-guided audio editing. Additionally, we introduce an alternative approach by incorporating MUSICGEN, a pre-trained frozen auto-regressive model, and propose three editing mechanisms, based on Replacement, Reweighting, and Refinement of the attention scores. We employ commonly-used music-specific evaluation metrics and a human study, to gauge time-varying controllability, adherence to global text cues, and overall audio realism. The automatic and human evaluations indicate that the proposed combination of prompt-to-prompt guidance with autoregressive generation models significantly outperforms the diffusion-based baseline in terms of melody, dynamics, and tempo of the generated audio. Our code is available at https://github.com/billsioros/EditGen

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

音频编辑 自回归模型 跨注意力控制
相关文章