cs.AI updates on arXiv.org 20小时前
LogTinyLLM: Tiny Large Language Models Based Contextual Log Anomaly Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出使用低秩自适应(LoRA)和适配器方法进行日志异常检测,在Thunderbird数据集上对比不同小型大型语言模型,结果显示LoRA方法在日志异常检测上比LogBert全微调方法提升18-19个百分点,准确率在97.76%至98.83%之间。

arXiv:2507.11071v1 Announce Type: cross Abstract: Log anomaly detection using traditional rule based or deep learning based methods is often challenging due to the large volume and highly complex nature of log sequence. So effective way of detection of anomalous sequence of logs is crucial for system maintenance and development. This paper proposes parameter efficient finetuning specifically low rank adaptation (LoRA) and adapter based approaches for finding contextual anomalies in sequence of logs in large log data set. It compares different tiny large language models (LLMs) on the Thunderbird dataset. The results show that LoRA based finetuning provides substantial performance improvements of 18 to 19 percentage over LogBert based full finetuning approach, achieving accuracy scores between 97.76% and 98.83% compared to 79.37%.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

日志异常检测 LoRA方法 性能提升 Thunderbird数据集 语言模型
相关文章