cs.AI updates on arXiv.org 18小时前
GATE: Graph Attention Neural Networks with Real-Time Edge Construction for Robust Indoor Localization using Mobile Embedded Devices
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为GATE的室内定位框架,通过构建自适应图表示和引入新型向量与边缘构建方法,有效提升了室内定位的准确性,相较于现有框架,在多个场景下实现了更低的平均和最坏情况误差。

arXiv:2507.11053v1 Announce Type: cross Abstract: Accurate indoor localization is crucial for enabling spatial context in smart environments and navigation systems. Wi-Fi Received Signal Strength (RSS) fingerprinting is a widely used indoor localization approach due to its compatibility with mobile embedded devices. Deep Learning (DL) models improve accuracy in localization tasks by learning RSS variations across locations, but they assume fingerprint vectors exist in a Euclidean space, failing to incorporate spatial relationships and the non-uniform distribution of real-world RSS noise. This results in poor generalization across heterogeneous mobile devices, where variations in hardware and signal processing distort RSS readings. Graph Neural Networks (GNNs) can improve upon conventional DL models by encoding indoor locations as nodes and modeling their spatial and signal relationships as edges. However, GNNs struggle with non-Euclidean noise distributions and suffer from the GNN blind spot problem, leading to degraded accuracy in environments with dense access points (APs). To address these challenges, we propose GATE, a novel framework that constructs an adaptive graph representation of fingerprint vectors while preserving an indoor state-space topology, modeling the non-Euclidean structure of RSS noise to mitigate environmental noise and address device heterogeneity. GATE introduces 1) a novel Attention Hyperspace Vector (AHV) for enhanced message passing, 2) a novel Multi-Dimensional Hyperspace Vector (MDHV) to mitigate the GNN blind spot, and 3) an new Real-Time Edge Construction (RTEC) approach for dynamic graph adaptation. Extensive real-world evaluations across multiple indoor spaces with varying path lengths, AP densities, and heterogeneous devices demonstrate that GATE achieves 1.6x to 4.72x lower mean localization errors and 1.85x to 4.57x lower worst-case errors compared to state-of-the-art indoor localization frameworks.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

室内定位 深度学习 图神经网络 GNN GATE框架
相关文章