cs.AI updates on arXiv.org 20小时前
Biological Processing Units: Leveraging an Insect Connectome to Pioneer Biofidelic Neural Architectures
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

将果蝇幼虫大脑连接组转化为生物处理单元(BPU),在MNIST和CIFAR-10数据集上表现出色,并超过同等规模的MLP。研究显示生物神经架构在支持复杂认知任务方面的潜力。

arXiv:2507.10951v1 Announce Type: cross Abstract: The complete connectome of the Drosophila larva brain offers a unique opportunity to investigate whether biologically evolved circuits can support artificial intelligence. We convert this wiring diagram into a Biological Processing Unit (BPU), a fixed recurrent network derived directly from synaptic connectivity. Despite its modest size 3,000 neurons and 65,000 weights between them), the unmodified BPU achieves 98% accuracy on MNIST and 58% on CIFAR-10, surpassing size-matched MLPs. Scaling the BPU via structured connectome expansions further improves CIFAR-10 performance, while modality-specific ablations reveal the uneven contributions of different sensory subsystems. On the ChessBench dataset, a lightweight GNN-BPU model trained on only 10,000 games achieves 60% move accuracy, nearly 10x better than any size transformer. Moreover, CNN-BPU models with ~2M parameters outperform parameter-matched Transformers, and with a depth-6 minimax search at inference, reach 91.7% accuracy, exceeding even a 9M-parameter Transformer baseline. These results demonstrate the potential of biofidelic neural architectures to support complex cognitive tasks and motivate scaling to larger and more intelligent connectomes in future work.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

生物大脑连接组 人工智能 生物处理单元 认知任务 神经网络
相关文章