cs.AI updates on arXiv.org 20小时前
A Lightweight and Robust Framework for Real-Time Colorectal Polyp Detection Using LOF-Based Preprocessing and YOLO-v11n
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种结合LOF算法和YOLO-v11n模型的新框架,用于提高结直肠癌息肉的检测准确性和效率,并在多个公共数据集上进行了验证。

arXiv:2507.10864v1 Announce Type: cross Abstract: Objectives: Timely and accurate detection of colorectal polyps plays a crucial role in diagnosing and preventing colorectal cancer, a major cause of mortality worldwide. This study introduces a new, lightweight, and efficient framework for polyp detection that combines the Local Outlier Factor (LOF) algorithm for filtering noisy data with the YOLO-v11n deep learning model. Study design: An experimental study leveraging deep learning and outlier removal techniques across multiple public datasets. Methods: The proposed approach was tested on five diverse and publicly available datasets: CVC-ColonDB, CVC-ClinicDB, Kvasir-SEG, ETIS, and EndoScene. Since these datasets originally lacked bounding box annotations, we converted their segmentation masks into suitable detection labels. To enhance the robustness and generalizability of our model, we apply 5-fold cross-validation and remove anomalous samples using the LOF method configured with 30 neighbors and a contamination ratio of 5%. Cleaned data are then fed into YOLO-v11n, a fast and resource-efficient object detection architecture optimized for real-time applications. We train the model using a combination of modern augmentation strategies to improve detection accuracy under diverse conditions. Results: Our approach significantly improves polyp localization performance, achieving a precision of 95.83%, recall of 91.85%, F1-score of 93.48%, mAP@0.5 of 96.48%, and mAP@0.5:0.95 of 77.75%. Compared to previous YOLO-based methods, our model demonstrates enhanced accuracy and efficiency. Conclusions: These results suggest that the proposed method is well-suited for real-time colonoscopy support in clinical settings. Overall, the study underscores how crucial data preprocessing and model efficiency are when designing effective AI systems for medical imaging.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 息肉检测 数据预处理 YOLO-v11n 医学影像
相关文章