cs.AI updates on arXiv.org 20小时前
Winsor-CAM: Human-Tunable Visual Explanations from Deep Networks via Layer-Wise Winsorization
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Winsor-CAM,一种基于Grad-CAM的改进方法,通过聚合所有卷积层信息生成鲁棒性强的显著性图,并应用Winsorization和用户可控阈值,实现模型行为的多层次灵活探索,提升CNN决策解释的可信度。

arXiv:2507.10846v1 Announce Type: cross Abstract: Interpreting the decision-making process of Convolutional Neural Networks (CNNs) is critical for deploying models in high-stakes domains. Gradient-weighted Class Activation Mapping (Grad-CAM) is a widely used method for visual explanations, yet it typically focuses on the final convolutional layer or na\"ively averages across layers, strategies that can obscure important semantic cues or amplify irrelevant noise. We propose Winsor-CAM, a novel, human-tunable extension of Grad-CAM that generates robust and coherent saliency maps by aggregating information across all convolutional layers. To mitigate the influence of noisy or extreme attribution values, Winsor-CAM applies Winsorization, a percentile-based outlier attenuation technique. A user-controllable threshold allows for semantic-level tuning, enabling flexible exploration of model behavior across representational hierarchies. Evaluations on standard architectures (ResNet50, DenseNet121, VGG16, InceptionV3) using the PASCAL VOC 2012 dataset demonstrate that Winsor-CAM produces more interpretable heatmaps and achieves superior performance in localization metrics, including intersection-over-union and center-of-mass alignment, when compared to Grad-CAM and uniform layer-averaging baselines. Winsor-CAM advances the goal of trustworthy AI by offering interpretable, multi-layer insights with human-in-the-loop control.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CNN 决策解释 Grad-CAM Winsorization 可解释AI
相关文章