cs.AI updates on arXiv.org 20小时前
Semantic Context for Tool Orchestration
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了语义上下文(SC)在工具编排中的重要性,通过引入SC-LinUCB理论框架,验证了其在动态动作空间中的适用性,并展示了基于SC的检索如何有效提升大型语言模型(LLM)的编排能力,为构建高效、自适应和可扩展的编排代理提供指导。

arXiv:2507.10820v1 Announce Type: cross Abstract: This paper demonstrates that Semantic Context (SC), leveraging descriptive tool information, is a foundational component for robust tool orchestration. Our contributions are threefold. First, we provide a theoretical foundation using contextual bandits, introducing SC-LinUCB and proving it achieves lower regret and adapts favourably in dynamic action spaces. Second, we provide parallel empirical validation with Large Language Models, showing that SC is critical for successful in-context learning in both static (efficient learning) and non-stationary (robust adaptation) settings. Third, we propose the FiReAct pipeline, and demonstrate on a benchmark with over 10,000 tools that SC-based retrieval enables an LLM to effectively orchestrate over a large action space. These findings provide a comprehensive guide to building more sample-efficient, adaptive, and scalable orchestration agents.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语义上下文 工具编排 大型语言模型 自适应编排 效率提升
相关文章