arXiv:2507.10642v1 Announce Type: cross Abstract: A growing issue within conservation bioacoustics is the task of analysing the vast amount of data generated from the use of passive acoustic monitoring devices. In this paper, we present an alternative AI model which has the potential to help alleviate this problem. Our model formulation addresses the key issues encountered when using current AI models for bioacoustic analysis, namely the: limited training data available; environmental impact, particularly in energy consumption and carbon footprint of training and implementing these models; and associated hardware requirements. The model developed in this work uses associative memory via a transparent, explainable Hopfield neural network to store signals and detect similar signals which can then be used to classify species. Training is rapid ($3$\,ms), as only one representative signal is required for each target sound within a dataset. The model is fast, taking only $5.4$\,s to pre-process and classify all $10384$ publicly available bat recordings, on a standard Apple MacBook Air. The model is also lightweight with a small memory footprint of $144.09$\,MB of RAM usage. Hence, the low computational demands make the model ideal for use on a variety of standard personal devices with potential for deployment in the field via edge-processing devices. It is also competitively accurate, with up to $86\%$ precision on the dataset used to evaluate the model. In fact, we could not find a single case of disagreement between model and manual identification via expert field guides. Although a dataset of bat echolocation calls was chosen to demo this first-of-its-kind AI model, trained on only two representative calls, the model is not species specific. In conclusion, we propose an equitable AI model that has the potential to be a game changer for fast, lightweight, sustainable, transparent, explainable and accurate bioacoustic analysis.