cs.AI updates on arXiv.org 20小时前
GeoHopNet: Hopfield-Augmented Sparse Spatial Attention for Dynamic UAV Site Location Problem
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出GeoHopNet,一种针对动态无人机选址问题的Hopfield增强稀疏空间注意力网络,通过距离偏置多头注意力机制、K近邻稀疏注意力、Hopfield外部记忆模块和记忆正则化策略,有效解决传统方法在处理大规模城市级位置问题时的计算复杂度瓶颈。

arXiv:2507.10636v1 Announce Type: cross Abstract: The rapid development of urban low-altitude unmanned aerial vehicle (UAV) economy poses new challenges for dynamic site selection of UAV landing points and supply stations. Traditional deep reinforcement learning methods face computational complexity bottlenecks, particularly with standard attention mechanisms, when handling large-scale urban-level location problems. This paper proposes GeoHopNet, a Hopfield-augmented sparse spatial attention network specifically designed for dynamic UAV site location problems. Our approach introduces four core innovations: (1) distance-biased multi-head attention mechanism that explicitly encodes spatial geometric information; (2) K-nearest neighbor sparse attention that reduces computational complexity from $O(N^2)$ to $O(NK)$; (3) a modern Hopfield external memory module; and (4) a memory regularization strategy. Experimental results demonstrate that GeoHopNet extends the boundary of solvable problem sizes. For large-scale instances with 1,000 nodes, where standard attention models become prohibitively slow (over 3 seconds per instance) and traditional solvers fail, GeoHopNet finds high-quality solutions (0.22\% optimality gap) in under 0.1 seconds. Compared to the state-of-the-art ADNet baseline on 100-node instances, our method improves solution quality by 22.2\% and is 1.8$\times$ faster.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

GeoHopNet 无人机选址 深度学习 注意力机制
相关文章