cs.AI updates on arXiv.org 19小时前
Scalable Unsupervised Segmentation via Random Fourier Feature-based Gaussian Process
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出RFF-GP-HSMM,一种结合随机傅里叶特征和隐半马尔可夫模型的时间序列分割方法,有效降低高斯过程隐半马尔可夫模型训练中的计算成本,实现快速分割,实验结果表明其性能与常规方法相当,速度提升约278倍。

arXiv:2507.10632v1 Announce Type: cross Abstract: In this paper, we propose RFF-GP-HSMM, a fast unsupervised time-series segmentation method that incorporates random Fourier features (RFF) to address the high computational cost of the Gaussian process hidden semi-Markov model (GP-HSMM). GP-HSMM models time-series data using Gaussian processes, requiring inversion of an N times N kernel matrix during training, where N is the number of data points. As the scale of the data increases, matrix inversion incurs a significant computational cost. To address this, the proposed method approximates the Gaussian process with linear regression using RFF, preserving expressive power while eliminating the need for inversion of the kernel matrix. Experiments on the Carnegie Mellon University (CMU) motion-capture dataset demonstrate that the proposed method achieves segmentation performance comparable to that of conventional methods, with approximately 278 times faster segmentation on time-series data comprising 39,200 frames.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列分割 RFF-GP-HSMM 隐半马尔可夫模型 计算效率 数据分割
相关文章