cs.AI updates on arXiv.org 20小时前
YOLOatr : Deep Learning Based Automatic Target Detection and Localization in Thermal Infrared Imagery
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种基于改进YOLOv5s的单阶段目标检测器YOLOatr,针对热红外图像目标检测的挑战,通过优化检测头、特征融合和定制数据增强策略,在DSIAC MWIR数据集上实现了99.6%的先进目标识别性能。

arXiv:2507.11267v1 Announce Type: cross Abstract: Automatic Target Detection (ATD) and Recognition (ATR) from Thermal Infrared (TI) imagery in the defense and surveillance domain is a challenging computer vision (CV) task in comparison to the commercial autonomous vehicle perception domain. Limited datasets, peculiar domain-specific and TI modality-specific challenges, i.e., limited hardware, scale invariance issues due to greater distances, deliberate occlusion by tactical vehicles, lower sensor resolution and resultant lack of structural information in targets, effects of weather, temperature, and time of day variations, and varying target to clutter ratios all result in increased intra-class variability and higher inter-class similarity, making accurate real-time ATR a challenging CV task. Resultantly, contemporary state-of-the-art (SOTA) deep learning architectures underperform in the ATR domain. We propose a modified anchor-based single-stage detector, called YOLOatr, based on a modified YOLOv5s, with optimal modifications to the detection heads, feature fusion in the neck, and a custom augmentation profile. We evaluate the performance of our proposed model on a comprehensive DSIAC MWIR dataset for real-time ATR over both correlated and decorrelated testing protocols. The results demonstrate that our proposed model achieves state-of-the-art ATR performance of up to 99.6%.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

目标检测 热红外图像 YOLOv5s 深度学习 红外图像目标识别
相关文章