cs.AI updates on arXiv.org 20小时前
Fine-tuning Large Language Model for Automated Algorithm Design
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨将大型语言模型(LLMs)微调用于算法设计,提出DAR采样策略和直接偏好优化,实验证明微调LLMs在特定任务中表现优异,并具备良好泛化能力。

arXiv:2507.10614v1 Announce Type: cross Abstract: The integration of large language models (LLMs) into automated algorithm design has shown promising potential. A prevalent approach embeds LLMs within search routines to iteratively generate and refine candidate algorithms. However, most existing methods rely on off-the-shelf LLMs trained for general coding tasks,leaving a key question open: Do we need LLMs specifically tailored for algorithm design? If so, how can such LLMs be effectively obtained and how well can they generalize across different algorithm design tasks? In this paper, we take a first step toward answering these questions by exploring fine-tuning of LLMs for algorithm design. We introduce a Diversity-Aware Rank based (DAR) sampling strategy to balance training data diversity and quality, then we leverage direct preference optimization to efficiently align LLM outputs with task objectives. Our experiments, conducted on Llama-3.2-1B-Instruct and Llama- 3.1-8B-Instruct, span three distinct algorithm design tasks. Results suggest that finetuned LLMs can significantly outperform their off-the-shelf counterparts with the smaller Llama-3.2-1B-Instruct and match the larger Llama-3.1-8B-Instruct on the admissible set problem. Moreover, we observe promising generalization: LLMs finetuned on specific algorithm design tasks also improve performance on related tasks with varying settings. These findings highlight the value of task-specific adaptation for LLMs in algorithm design and open new avenues for future research.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 算法设计 微调 DAR采样 泛化能力
相关文章