arXiv:2507.10611v1 Announce Type: cross Abstract: Federated Learning (FL) emerged as a solution for collaborative medical image classification while preserving data privacy. However, label noise, which arises from inter-institutional data variability, can cause training instability and degrade model performance. Existing FL methods struggle with noise heterogeneity and the imbalance in medical data. Motivated by these challenges, we propose FedGSCA, a novel framework for enhancing robustness in noisy medical FL. FedGSCA introduces a Global Sample Selector that aggregates noise knowledge from all clients, effectively addressing noise heterogeneity and improving global model stability. Furthermore, we develop a Client Adaptive Adjustment (CAA) mechanism that combines adaptive threshold pseudo-label generation and Robust Credal Labeling Loss. CAA dynamically adjusts to class distributions, ensuring the inclusion of minority samples and carefully managing noisy labels by considering multiple plausible labels. This dual approach mitigates the impact of noisy data and prevents overfitting during local training, which improves the generalizability of the model. We evaluate FedGSCA on one real-world colon slides dataset and two synthetic medical datasets under various noise conditions, including symmetric, asymmetric, extreme, and heterogeneous types. The results show that FedGSCA outperforms the state-of-the-art methods, excelling in extreme and heterogeneous noise scenarios. Moreover, FedGSCA demonstrates significant advantages in improving model stability and handling complex noise, making it well-suited for real-world medical federated learning scenarios.