cs.AI updates on arXiv.org 19小时前
Repairing Language Model Pipelines by Meta Self-Refining Competing Constraints at Runtime
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

介绍了一种名为Meta Self-Refining的新框架,通过引入元修正层解决语言模型管道面对竞争性软约束时的效率问题,有效提升语言模型程序的效率。

arXiv:2507.10590v1 Announce Type: cross Abstract: Language Model (LM) pipelines can dynamically refine their outputs against programmatic constraints. However, their effectiveness collapses when faced with competing soft constraints, leading to inefficient backtracking loops where satisfying one constraint violates another. We introduce Meta Self-Refining, a framework that equips LM pipelines with a meta-corrective layer to repair these competitions at runtime/inference-time. Our approach monitors the pipeline's execution history to detect oscillatory failures. Upon detection, it invokes a meta-repairer LM that analyzes the holistic state of the backtracking attempts and synthesizes a strategic instruction to balance the competing requirements. This self-repair instruction guides the original LM out of a failing refining loop towards a successful output. Our results show Meta Self-Refining can successfully repair these loops, leading to more efficient LM programs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语言模型 元修正层 效率提升 竞争性约束 自修复
相关文章