arXiv:2507.10587v1 Announce Type: cross Abstract: Human users increasingly rely on natural language interactions with large language models (LLMs) in order to receive help on a large variety of tasks and problems. However, the trustworthiness and perceived legitimacy of LLMs is undermined by the fact that their output is frequently stated in very confident terms, even when its accuracy is questionable. Therefore, there is a need to signal the confidence of the language model to a user in order to reap the benefits of human-machine collaboration and mitigate potential harms. Verbalized uncertainty is the expression of confidence with linguistic means, an approach that integrates perfectly into language-based interfaces. Nevertheless, most recent research in natural language processing (NLP) overlooks the nuances surrounding human uncertainty communication and the data biases that influence machine uncertainty communication. We argue for anthropomimetic uncertainty, meaning that intuitive and trustworthy uncertainty communication requires a degree of linguistic authenticity and personalization to the user, which could be achieved by emulating human communication. We present a thorough overview over the research in human uncertainty communication, survey ongoing research, and perform additional analyses to demonstrate so-far overlooked biases in verbalized uncertainty. We conclude by pointing out unique factors in human-machine communication of uncertainty and deconstruct anthropomimetic uncertainty into future research directions for NLP.