cs.AI updates on arXiv.org 19小时前
AutoRAG-LoRA: Hallucination-Triggered Knowledge Retuning via Lightweight Adapters
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为AutoRAG-LoRA的模块化框架,用于解决大型语言模型(LLMs)在自然语言任务中的幻觉问题。该框架通过轻量级LoRA适配器和KL正则化训练,结合自动提示重写、混合检索和低秩适配器调整,有效降低事实偏差,同时保持模型效率和模块化。

arXiv:2507.10586v1 Announce Type: cross Abstract: Large Language Models (LLMs) have demonstrated remarkable fluency across a range of natural language tasks, yet remain vulnerable to hallucinations - factual inaccuracies that undermine trust in real world deployment. We present AutoRAG-LoRA, a modular framework for Retrieval-Augmented Generation (RAG) that tackles hallucination in large language models through lightweight LoRA-based adapters and KL-regularized training. Our pipeline integrates automated prompt rewriting, hybrid retrieval, and low-rank adapter tuning to ground responses in retrieved evidence. A hallucination detection module, using both classifier-based and self-evaluation techniques, assigns confidence scores to generated outputs, triggering an optional feedback correction loop. This loop enforces factual alignment via contrastive KL loss and adapter fine tuning. We demonstrate that AutoRAG-LoRA significantly reduces the factual drift while preserving the efficiency and modularity of the model.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 幻觉问题 轻量级框架 LoRA RAG
相关文章