cs.AI updates on arXiv.org 20小时前
FairTargetSim: An Interactive Simulator for Understanding and Explaining the Fairness Effects of Target Variable Definition
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章介绍了一种名为FairTargetSim(FTS)的互动式模拟工具,旨在解决机器学习中的目标变量定义问题,以增强算法系统的公平性。FTS可用于算法开发者、非技术利益相关者、研究人员和教育工作者。

arXiv:2403.06031v2 Announce Type: replace-cross Abstract: Machine learning requires defining one's target variable for predictions or decisions, a process that can have profound implications for fairness, since biases are often encoded in target variable definition itself, before any data collection or training. The downstream impacts of target variable definition must be taken into account in order to responsibly develop, deploy, and use the algorithmic systems. We propose FairTargetSim (FTS), an interactive and simulation-based approach for this. We demonstrate FTS using the example of algorithmic hiring, grounded in real-world data and user-defined target variables. FTS is open-source; it can be used by algorithm developers, non-technical stakeholders, researchers, and educators in a number of ways. FTS is available at: http://tinyurl.com/ftsinterface. The video accompanying this paper is here: http://tinyurl.com/ijcaifts.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 公平性 目标变量 算法系统 FTS工具
相关文章