cs.AI updates on arXiv.org 19小时前
Can Large Language Models Understand As Well As Apply Patent Regulations to Pass a Hands-On Patent Attorney Test?
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文评估了多种大型语言模型在专利考试中的应用表现,发现模型准确率普遍未达到专业标准,指出LLMs在专利领域的应用仍需改进。

arXiv:2507.10576v1 Announce Type: cross Abstract: The legal field already uses various large language models (LLMs) in actual applications, but their quantitative performance and reasons for it are underexplored. We evaluated several open-source and proprietary LLMs -- including GPT-series, Anthropic, Deepseek and Llama-3, variants -- on parts of the European Qualifying Examination (EQE) for future European Patent Attorneys. OpenAI o1 led with 0.82 accuracy and 0.81 F1 score, whereas (Amazon Web Services) AWS Llama 3.1 8B lagged at 0.50 accuracy, and a Python-deployed Llama 3.1 8B scored 0.55. The latter two are within the range of mere guessing for the two-answer forced-choice design. None of the evaluated models could have passed the examination fully, as accuracy never exceeded the average threshold of 0.90 required for professional-level standards -- also not models that are regularly promoted for their assumed beyond-PhD- and bar-admitted-lawyer-level performance. GPT-4o excelled at integrating text and graphics, while Claude 3 Opus often lost formatting coherence. Human patent experts evaluated the textual justifications and uncovered various critical shortcomings of each model. They valued clarity and legal rationale over the raw correctness of the answers, which revealed misalignment between automatic metrics and expert judgment. Model outputs were sensitive to modest temperature changes and prompt wording, which underscores the remaining necessity of expert oversight. Future work should target logical consistency, robust multimodality, and adaptive prompting to approach human-level patent proficiency. In summary, despite the outstanding performance of recent large models, the general public might overestimate their performance. The field has a long way to go to develop a virtual patent attorney. This paper wants to point out several specific limitations that need solutions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 专利考试 性能评估
相关文章