cs.AI updates on arXiv.org 20小时前
An Agentic Flow for Finite State Machine Extraction using Prompt Chaining
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FlowFSM,一种利用大型语言模型提取网络协议FSM的新框架,通过实验证明其在协议分析和FSM推理中的潜力。

arXiv:2507.11222v1 Announce Type: cross Abstract: Finite-State Machines (FSMs) are critical for modeling the operational logic of network protocols, enabling verification, analysis, and vulnerability discovery. However, existing FSM extraction techniques face limitations such as scalability, incomplete coverage, and ambiguity in natural language specifications. In this paper, we propose FlowFSM, a novel agentic framework that leverages Large Language Models (LLMs) combined with prompt chaining and chain-of-thought reasoning to extract accurate FSMs from raw RFC documents. FlowFSM systematically processes protocol specifications, identifies state transitions, and constructs structured rule-books by chaining agent outputs. Experimental evaluation across FTP and RTSP protocols demonstrates that FlowFSM achieves high extraction precision while minimizing hallucinated transitions, showing promising results. Our findings highlight the potential of agent-based LLM systems in the advancement of protocol analysis and FSM inference for cybersecurity and reverse engineering applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

FSM提取 大型语言模型 网络协议分析
相关文章