arXiv:2507.11482v1 Announce Type: new Abstract: Three core tenets of reinforcement learning (RL)--concerning the definition of agency, the objective of learning, and the scope of the reward hypothesis--have been highlighted as key targets for conceptual revision, with major implications for theory and application. We propose a framework, inspired by open-ended evolutionary theory, to reconsider these three "dogmas." We revisit each assumption and address related concerns raised alongside them. To make our arguments relevant to RL as a model of biological learning, we first establish that evolutionary dynamics can plausibly operate within living brains over an individual's lifetime, and are not confined to cross-generational processes. We begin by revisiting the second dogma, drawing on evolutionary insights to enrich the "adaptation-rather-than-search" view of learning. We then address the third dogma regarding the limits of the reward hypothesis, using analogies from evolutionary fitness to illuminate the scalar reward vs. multi-objective debate. After discussing practical implications for exploration in RL, we turn to the first--and arguably most fundamental--issue: the absence of a formal account of agency. We argue that unlike the other two problems, the evolutionary paradigm alone cannot resolve the agency question, though it gestures in a productive direction. We advocate integrating ideas from origins-of-life theory, where the thermodynamics of sustenance and replication offer promising foundations for understanding agency and resource-constrained reinforcement learning in biological systems.