cs.AI updates on arXiv.org 19小时前
Taming Uncertainty via Automation: Observing, Analyzing, and Optimizing Agentic AI Systems
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出AgentOps框架,旨在解决大型语言模型在智能系统中的应用问题。该框架覆盖开发者、测试者、SRE和业务用户四大角色,提供从行为观察到运行自动化六阶段流程,旨在管理不确定性,实现安全、自适应和有效的AI系统运维。

arXiv:2507.11277v1 Announce Type: new Abstract: Large Language Models (LLMs) are increasingly deployed within agentic systems-collections of interacting, LLM-powered agents that execute complex, adaptive workflows using memory, tools, and dynamic planning. While enabling powerful new capabilities, these systems also introduce unique forms of uncertainty stemming from probabilistic reasoning, evolving memory states, and fluid execution paths. Traditional software observability and operations practices fall short in addressing these challenges. This paper introduces AgentOps: a comprehensive framework for observing, analyzing, optimizing, and automating operation of agentic AI systems. We identify distinct needs across four key roles-developers, testers, site reliability engineers (SREs), and business users-each of whom engages with the system at different points in its lifecycle. We present the AgentOps Automation Pipeline, a six-stage process encompassing behavior observation, metric collection, issue detection, root cause analysis, optimized recommendations, and runtime automation. Throughout, we emphasize the critical role of automation in managing uncertainty and enabling self-improving AI systems-not by eliminating uncertainty, but by taming it to ensure safe, adaptive, and effective operation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

智能系统运维 大型语言模型 AI系统 不确定性管理
相关文章