cs.AI updates on arXiv.org 20小时前
The Pragmatic Frames of Spurious Correlations in Machine Learning: Interpreting How and Why They Matter
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文从机器学习中伪相关性的统计定义出发,分析其在研究中的应用及其对模型性能的影响,探讨了基于实际应用的判断框架,揭示了相关性价值的相对性。

arXiv:2411.04696v4 Announce Type: replace-cross Abstract: Learning correlations from data forms the foundation of today's machine learning (ML) and artificial intelligence (AI) research. While contemporary methods enable the automatic discovery of complex patterns, they are prone to failure when unintended correlations are captured. This vulnerability has spurred a growing interest in interrogating spuriousness, which is often seen as a threat to model performance, fairness, and robustness. In this article, we trace departures from the conventional statistical definition of spuriousness -- which denotes a non-causal relationship arising from coincidence or confounding -- to examine how its meaning is negotiated in ML research. Rather than relying solely on formal definitions, researchers assess spuriousness through what we call pragmatic frames: judgments based on what a correlation does in practice -- how it affects model behavior, supports or impedes task performance, or aligns with broader normative goals. Drawing on a broad survey of ML literature, we identify four such frames: relevance ("Models should use correlations that are relevant to the task"), generalizability ("Models should use correlations that generalize to unseen data"), human-likeness ("Models should use correlations that a human would use to perform the same task"), and harmfulness ("Models should use correlations that are not socially or ethically harmful"). These representations reveal that correlation desirability is not a fixed statistical property but a situated judgment informed by technical, epistemic, and ethical considerations. By examining how a foundational ML conundrum is problematized in research literature, we contribute to broader conversations on the contingent practices through which technical concepts like spuriousness are defined and operationalized.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

机器学习 伪相关性 模型性能 研究框架
相关文章