cs.AI updates on arXiv.org 19小时前
Automated Thematic Analyses Using LLMs: Xylazine Wound Management Social Media Chatter Use Case
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了使用大型语言模型(LLMs)进行社交媒体数据主题分析的可能性,通过实证研究验证了其可行性,为定性研究提供了一种可扩展的辅助手段。

arXiv:2507.10803v1 Announce Type: new Abstract: Background Large language models (LLMs) face challenges in inductive thematic analysis, a task requiring deep interpretive and domain-specific expertise. We evaluated the feasibility of using LLMs to replicate expert-driven thematic analysis of social media data. Methods Using two temporally non-intersecting Reddit datasets on xylazine (n=286 and n=686, for model optimization and validation, respectively) with twelve expert-derived themes, we evaluated five LLMs against expert coding. We modeled the task as a series of binary classifications, rather than a single, multi-label classification, employing zero-, single-, and few-shot prompting strategies and measuring performance via accuracy, precision, recall, and F1-score. Results On the validation set, GPT-4o with two-shot prompting performed best (accuracy: 90.9%; F1-score: 0.71). For high-prevalence themes, model-derived thematic distributions closely mirrored expert classifications (e.g., xylazine use: 13.6% vs. 17.8%; MOUD use: 16.5% vs. 17.8%). Conclusions Our findings suggest that few-shot LLM-based approaches can automate thematic analyses, offering a scalable supplement for qualitative research. Keywords: thematic analysis, large language models, natural language processing, qualitative analysis, social media, prompt engineering, public health

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

主题分析 大型语言模型 社交媒体研究 自然语言处理 定性分析
相关文章