arXiv:2507.11330v1 Announce Type: cross Abstract: Novelty is a crucial criterion in the peer review process for evaluating academic papers. Traditionally, it's judged by experts or measure by unique reference combinations. Both methods have limitations: experts have limited knowledge, and the effectiveness of the combination method is uncertain. Moreover, it's unclear if unique citations truly measure novelty. The large language model (LLM) possesses a wealth of knowledge, while human experts possess judgment abilities that the LLM does not possess. Therefore, our research integrates the knowledge and abilities of LLM and human experts to address the limitations of novelty assessment. The most common novelty in academic papers is the introduction of new methods. In this paper, we propose leveraging human knowledge and LLM to assist pretrained language models (PLMs, e.g. BERT etc.) in predicting the method novelty of papers. Specifically, we extract sentences related to the novelty of the academic paper from peer review reports and use LLM to summarize the methodology section of the academic paper, which are then used to fine-tune PLMs. In addition, we have designed a text-guided fusion module with novel Sparse-Attention to better integrate human and LLM knowledge. We compared the method we proposed with a large number of baselines. Extensive experiments demonstrate that our method achieves superior performance.