cs.AI updates on arXiv.org 19小时前
Score-of-Mixture Training: Training One-Step Generative Models Made Simple via Score Estimation of Mixture Distributions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Score-of-Mixture Training(SMT)的生成模型训练框架,通过最小化α-斜率Jensen-Shannon散度来训练模型。SMT能够估计真实与伪造样本间的混合分布得分,支持从头训练和蒸馏预训练的扩散模型,实验结果表明其性能与现有方法相当,甚至更优。

arXiv:2502.09609v3 Announce Type: replace-cross Abstract: We propose Score-of-Mixture Training (SMT), a novel framework for training one-step generative models by minimizing a class of divergences called the $\alpha$-skew Jensen--Shannon divergence. At its core, SMT estimates the score of mixture distributions between real and fake samples across multiple noise levels. Similar to consistency models, our approach supports both training from scratch (SMT) and distillation using a pretrained diffusion model, which we call Score-of-Mixture Distillation (SMD). It is simple to implement, requires minimal hyperparameter tuning, and ensures stable training. Experiments on CIFAR-10 and ImageNet 64x64 show that SMT/SMD are competitive with and can even outperform existing methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

生成模型 SMT框架 α-斜率Jensen-Shannon散度
相关文章