MarkTechPost@AI 07月15日 15:02
Gemini Embedding-001 Now Available: Multilingual AI Text Embeddings via Google API
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

谷歌的Gemini Embedding文本模型gemini-embedding-001现已通过Gemini API和Google AI Studio对开发者提供通用支持。该模型具备强大的多语言和灵活的文本表示能力,支持100多种语言,采用Matryoshka表示学习架构,允许开发者根据应用需求选择3072、1536或768维度的嵌入向量。它在多项基准测试中表现优异,并可与主流向量数据库和云平台无缝集成,适用于语义搜索、分类、聚类等多种AI应用场景。

🌍 支持超过100种语言:Gemini Embedding模型针对全球应用进行了优化,能够跨语言工作,是处理多语言项目理想选择,满足不同语言环境的需求。

🧸 Matryoshka表示学习架构:该模型采用独特的嵌套表示学习架构,开发者可根据应用需求灵活选择3072、1536或768维度的嵌入向量,在准确性和性能之间进行权衡,实现速度、成本和存储的最优化。

🏆 基准测试领先者:gemini-embedding-001在Massive Text Embedding Benchmark (MTEB)多语言排行榜上取得了优异成绩,超越此前所有Google模型及外部产品,在科学、法律、编码等领域表现突出。

🔗 统一架构简化工作流:该模型整合了此前需要多个专用模型才能实现的功能,简化了搜索、检索、聚类和分类等任务的流程,提高了开发效率。

🛠️ 兼容主流向量数据库:支持向量归一化,与余弦相似度和向量搜索框架兼容,并可与Pinecone、ChromaDB、Qdrant、Weaviate等流行向量数据库以及AlloyDB、Cloud SQL等Google数据库无缝集成。

Google’s Gemini Embedding text model, gemini-embedding-001, is now generally available to developers via the Gemini API and Google AI Studio, bringing powerful multilingual and flexible text representation capabilities to the broader AI ecosystem.

Multilingual Support and Dimensional Flexibility

Technical Specifications and Model Performance

Key Features

Metric/TaskGemini-embedding-001Legacy Google modelsCohere v3.0OpenAI-3-large
MTEB (Multilingual) Mean (Task)68.3762.1361.1258.93
MTEB (Multilingual) Mean (TaskType)59.5954.3253.2351.41
Bitext Mining79.2870.7370.5062.17
Classification71.8264.6462.9560.27
Clustering54.5948.4746.8946.89
Instant Retrieval5.184.08-1.89-2.68
Multilabel Classification29.1622.822.7422.03
Pair Classification83.6381.1479.8879.17
Reranking65.5861.2264.0763.89
Retrieval67.7159.6859.1659.27
STS (Semantic Textual Similarity)79.476.1174.871.68
MTEB (Eng, v2)73.369.5366.0166.43
MTEB (Code, v1)7665.451.9458.95
XOR-Retrieve90.4265.6768.76
XTREME-UP64.3334.9718.80

Practical Applications

Integration & Ecosystem

    API Access: Use gemini-embedding-001 in the Gemini API, Google AI Studio, and Vertex AI.Seamless Integration: Compatible with leading vector database solutions and cloud-based AI platforms, enabling easy deployment into modern data pipelines and applications.

Pricing and Migration

TierPricingNotes
FreeLimited usageGreat for prototyping and experimentation
Paid$0.15 per 1M tokensScales for production needs

Looking Forward

Conclusion

The general availability of gemini-embedding-001 marks a major advancement in Google’s AI toolkit, providing developers with a powerful, flexible, and multilingual text embedding solution that adapts to a wide range of application needs. With its scalable dimensionality, top-tier multilingual performance, and seamless integration into popular AI and vector search ecosystems, this model equips teams to build smarter, faster, and more globally relevant applications. As Google continues to innovate with features like batch processing and multimodal support, gemini-embedding-001 lays a strong foundation for the future of semantic understanding in AI.

Check out the Technical details. All credit for this research goes to the researchers of this project. Ready to connect with 1 Million+ AI Devs/Engineers/Researchers? See how NVIDIA, LG AI Research, and top AI companies leverage MarkTechPost to reach their target audience [Learn More]

The post Gemini Embedding-001 Now Available: Multilingual AI Text Embeddings via Google API appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

谷歌 Gemini Embedding AI文本模型 多语言支持
相关文章