arXiv:2506.22895v2 Announce Type: replace-cross Abstract: Time series autoregression (AR) is a classical tool for modeling auto-correlations and periodic structures in real-world systems. We revisit this model from an interpretable machine learning perspective by introducing sparse autoregression (SAR), where $\ell_0$-norm constraints are used to isolate dominant periodicities. We formulate exact mixed-integer optimization (MIO) approaches for both stationary and non-stationary settings and introduce two scalable extensions: a decision variable pruning (DVP) strategy for temporally-varying SAR (TV-SAR), and a two-stage optimization scheme for spatially- and temporally-varying SAR (STV-SAR). These models enable scalable inference on real-world spatiotemporal datasets. We validate our framework on large-scale mobility and climate time series. On NYC ridesharing data, TV-SAR reveals interpretable daily and weekly cycles as well as long-term shifts due to COVID-19. On climate datasets, STV-SAR uncovers the evolving spatial structure of temperature and precipitation seasonality across four decades in North America and detects global sea surface temperature dynamics, including El Ni\~no. Together, our results demonstrate the interpretability, flexibility, and scalability of sparse autoregression for periodicity quantification in complex time series.