cs.AI updates on arXiv.org 07月15日 12:27
Interpretable Time Series Autoregression for Periodicity Quantification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文从可解释机器学习角度重新审视时间序列自回归模型,提出稀疏自回归方法,并应用于大规模时空数据集,验证其在周期性量化方面的可解释性、灵活性和可扩展性。

arXiv:2506.22895v2 Announce Type: replace-cross Abstract: Time series autoregression (AR) is a classical tool for modeling auto-correlations and periodic structures in real-world systems. We revisit this model from an interpretable machine learning perspective by introducing sparse autoregression (SAR), where $\ell_0$-norm constraints are used to isolate dominant periodicities. We formulate exact mixed-integer optimization (MIO) approaches for both stationary and non-stationary settings and introduce two scalable extensions: a decision variable pruning (DVP) strategy for temporally-varying SAR (TV-SAR), and a two-stage optimization scheme for spatially- and temporally-varying SAR (STV-SAR). These models enable scalable inference on real-world spatiotemporal datasets. We validate our framework on large-scale mobility and climate time series. On NYC ridesharing data, TV-SAR reveals interpretable daily and weekly cycles as well as long-term shifts due to COVID-19. On climate datasets, STV-SAR uncovers the evolving spatial structure of temperature and precipitation seasonality across four decades in North America and detects global sea surface temperature dynamics, including El Ni\~no. Together, our results demonstrate the interpretability, flexibility, and scalability of sparse autoregression for periodicity quantification in complex time series.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

稀疏自回归 时间序列分析 可解释机器学习 时空数据 周期性量化
相关文章