arXiv:2507.09871v1 Announce Type: cross Abstract: The grand goal of AI research, and particularly Self Supervised Learning (SSL), is to produce systems that can successfully solve any possible task. In contrast, current evaluation methods available to AI researchers typically rely on a fixed collection of hand-picked downstream benchmarks. Hence, a large amount of effort is put into designing and searching for large collection of evaluation tasks that can serve as a proxy of our grand goal. We argue that such a rigid evaluation protocol creates a silent bottleneck in AI research. To remedy that, we define a probabilistic space of downstream tasks obtained by adopting a distribution of tasks and by defining Task Priors. Under this view, one can evaluate a model's performance over the set of all possible downstream tasks. Our framework is the first to provide answers to key questions such as (i) what is the average performance of my model over all possible downstream tasks weighted by the probability to encounter each task? or (ii) what is the variance of my model's performance across all downstream tasks under the defined Task Priors? Beyond establishing a new standard for evaluation, we believe that Task Priors will accelerate the pace of research in SSL - where downstream task evaluation is the sole qualitative signal that researchers have access to.