cs.AI updates on arXiv.org 07月15日 12:26
A Survey on MLLM-based Visually Rich Document Understanding: Methods, Challenges, and Emerging Trends
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文综述了基于多模态大型语言模型(MLLM)在视觉丰富文档理解(VRDU)领域的最新进展,包括特征编码与融合方法、训练范式和所用数据集,并探讨了VRDU系统的发展挑战与未来方向。

arXiv:2507.09861v1 Announce Type: cross Abstract: Visually-Rich Document Understanding (VRDU) has emerged as a critical field, driven by the need to automatically process documents containing complex visual, textual, and layout information. Recently, Multimodal Large Language Models (MLLMs) have shown remarkable potential in this domain, leveraging both Optical Character Recognition (OCR)-dependent and OCR-free frameworks to extract and interpret information in document images. This survey reviews recent advancements in MLLM-based VRDU, highlighting three core components: (1) methods for encoding and fusing textual, visual, and layout features; (2) training paradigms, including pretraining strategies, instruction-response tuning, and the trainability of different model modules; and (3) datasets utilized for pretraining, instruction-tuning, and supervised fine-tuning. Finally, we discuss the challenges and opportunities in this evolving field and propose future directions to advance the efficiency, generalizability, and robustness of VRDU systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多模态大型语言模型 视觉丰富文档理解 特征融合 训练范式 数据集
相关文章