arXiv:2507.09831v1 Announce Type: cross Abstract: Cognitive diagnosis (CD) models latent cognitive states of human learners by analyzing their response patterns on diagnostic tests, serving as a crucial machine learning technique for educational assessment and evaluation. Traditional cognitive diagnosis models typically follow a transductive prediction paradigm that optimizes parameters to fit response scores and extract learner abilities. These approaches face significant limitations as they cannot perform instant diagnosis for new learners without computationally expensive retraining and produce diagnostic outputs with limited reliability. In this study, we introduces a novel generative diagnosis paradigm that fundamentally shifts CD from predictive to generative modeling, enabling inductive inference of cognitive states without parameter re-optimization. We propose two simple yet effective instantiations of this paradigm: Generative Item Response Theory (G-IRT) and Generative Neural Cognitive Diagnosis Model (G-NCDM), which achieve excellent performance improvements over traditional methods. The generative approach disentangles cognitive state inference from response prediction through a well-designed generation process that incorporates identifiability and monotonicity conditions. Extensive experiments on real-world datasets demonstrate the effectiveness of our methodology in addressing scalability and reliability challenges, especially $\times 100$ speedup for the diagnosis of new learners. Our framework opens new avenues for cognitive diagnosis applications in artificial intelligence, particularly for intelligent model evaluation and intelligent education systems. The code is available at https://github.com/CSLiJT/Generative-CD.git.