cs.AI updates on arXiv.org 07月15日 12:26
Federated Learning with Graph-Based Aggregation for Traffic Forecasting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合FedAvg与图学习原理的轻量级联邦学习交通预测方法,有效捕捉空间关系,在两个基准数据集上表现优异。

arXiv:2507.09805v1 Announce Type: cross Abstract: In traffic prediction, the goal is to estimate traffic speed or flow in specific regions or road segments using historical data collected by devices deployed in each area. Each region or road segment can be viewed as an individual client that measures local traffic flow, making Federated Learning (FL) a suitable approach for collaboratively training models without sharing raw data. In centralized FL, a central server collects and aggregates model updates from multiple clients to build a shared model while preserving each client's data privacy. Standard FL methods, such as Federated Averaging (FedAvg), assume that clients are independent, which can limit performance in traffic prediction tasks where spatial relationships between clients are important. Federated Graph Learning methods can capture these dependencies during server-side aggregation, but they often introduce significant computational overhead. In this paper, we propose a lightweight graph-aware FL approach that blends the simplicity of FedAvg with key ideas from graph learning. Rather than training full models, our method applies basic neighbourhood aggregation principles to guide parameter updates, weighting client models based on graph connectivity. This approach captures spatial relationships effectively while remaining computationally efficient. We evaluate our method on two benchmark traffic datasets, METR-LA and PEMS-BAY, and show that it achieves competitive performance compared to standard baselines and recent graph-based federated learning techniques.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 交通预测 图学习 FedAvg 数据隐私
相关文章