cs.AI updates on arXiv.org 07月15日 12:26
Universal Physics Simulation: A Foundational Diffusion Approach
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种新型AI模型,通过直接从边界条件数据中学习物理定律,实现通用物理模拟,突破传统方法的局限性,为物理发现提供新途径。

arXiv:2507.09733v1 Announce Type: cross Abstract: We present the first foundational AI model for universal physics simulation that learns physical laws directly from boundary-condition data without requiring a priori equation encoding. Traditional physics-informed neural networks (PINNs) and finite-difference methods necessitate explicit mathematical formulation of governing equations, fundamentally limiting their generalizability and discovery potential. Our sketch-guided diffusion transformer approach reimagines computational physics by treating simulation as a conditional generation problem, where spatial boundary conditions guide the synthesis of physically accurate steady-state solutions. By leveraging enhanced diffusion transformer architectures with novel spatial relationship encoding, our model achieves direct boundary-to-equilibrium mapping and is generalizable to diverse physics domains. Unlike sequential time-stepping methods that accumulate errors over iterations, our approach bypasses temporal integration entirely, directly generating steady-state solutions with SSIM > 0.8 while maintaining sub-pixel boundary accuracy. Our data-informed approach enables physics discovery through learned representations analyzable via Layer-wise Relevance Propagation (LRP), revealing emergent physical relationships without predetermined mathematical constraints. This work represents a paradigm shift from AI-accelerated physics to AI-discovered physics, establishing the first truly universal physics simulation framework.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI模型 物理模拟 物理定律学习
相关文章