cs.AI updates on arXiv.org 07月15日 12:26
Conformal Prediction for Privacy-Preserving Machine Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了在确定性加密数据上集成一致性预测(CP)与监督学习,以实现严格的不确定性量化与隐私保护机器学习的结合。实验结果表明,CP方法在加密域中仍有效,且模型在加密数据上训练后能提取有意义结构,测试准确率达到36.88%,高于随机猜测。

arXiv:2507.09678v1 Announce Type: cross Abstract: We investigate the integration of Conformal Prediction (CP) with supervised learning on deterministically encrypted data, aiming to bridge the gap between rigorous uncertainty quantification and privacy-preserving machine learning. Using AES-encrypted variants of the MNIST dataset, we demonstrate that CP methods remain effective even when applied directly in the encrypted domain, owing to the preservation of data exchangeability under fixed-key encryption. We test traditional $p$-value-based against $e$-value-based conformal predictors. Our empirical evaluation reveals that models trained on deterministically encrypted data retain the ability to extract meaningful structure, achieving 36.88\% test accuracy -- significantly above random guessing (9.56\%) observed with per-instance encryption. Moreover, $e$-value-based CP achieves predictive set coverage of over 60\% with 4.3 loss-threshold calibration, correctly capturing the true label in 4888 out of 5000 test cases. In contrast, the $p$-value-based CP yields smaller predictive sets but with reduced coverage accuracy. These findings highlight both the promise and limitations of CP in encrypted data settings and underscore critical trade-offs between prediction set compactness and reliability. %Our work sets a foundation for principled uncertainty quantification in secure, privacy-aware learning systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

一致性预测 加密数据 监督学习 不确定性量化 隐私保护
相关文章