cs.AI updates on arXiv.org 07月15日 12:26
DRAGD: A Federated Unlearning Data Reconstruction Attack Based on Gradient Differences
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出针对联邦解学习的攻击方法DRAGD和DRAGDP,可从梯度差异中恢复被删除数据,并展示其在重建数据方面的优越性能,为联邦解学习系统的安全性提升提供实际解决方案。

arXiv:2507.09602v1 Announce Type: cross Abstract: Federated learning enables collaborative machine learning while preserving data privacy. However, the rise of federated unlearning, designed to allow clients to erase their data from the global model, introduces new privacy concerns. Specifically, the gradient exchanges during the unlearning process can leak sensitive information about deleted data. In this paper, we introduce DRAGD, a novel attack that exploits gradient discrepancies before and after unlearning to reconstruct forgotten data. We also present DRAGDP, an enhanced version of DRAGD that leverages publicly available prior data to improve reconstruction accuracy, particularly for complex datasets like facial images. Extensive experiments across multiple datasets demonstrate that DRAGD and DRAGDP significantly outperform existing methods in data reconstruction.Our work highlights a critical privacy vulnerability in federated unlearning and offers a practical solution, advancing the security of federated unlearning systems in real-world applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

联邦学习 隐私安全 数据恢复
相关文章