cs.AI updates on arXiv.org 07月15日 12:26
Domain Adaptation and Multi-view Attention for Learnable Landmark Tracking with Sparse Data
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种轻量级地标跟踪技术,通过高效神经网络和领域自适应方法,实现航天器在轨实时跟踪,降低任务成本和时间,提升航天任务效率。

arXiv:2507.09420v1 Announce Type: cross Abstract: The detection and tracking of celestial surface terrain features are crucial for autonomous spaceflight applications, including Terrain Relative Navigation (TRN), Entry, Descent, and Landing (EDL), hazard analysis, and scientific data collection. Traditional photoclinometry-based pipelines often rely on extensive a priori imaging and offline processing, constrained by the computational limitations of radiation-hardened systems. While historically effective, these approaches typically increase mission costs and duration, operate at low processing rates, and have limited generalization. Recently, learning-based computer vision has gained popularity to enhance spacecraft autonomy and overcome these limitations. While promising, emerging techniques frequently impose computational demands exceeding the capabilities of typical spacecraft hardware for real-time operation and are further challenged by the scarcity of labeled training data for diverse extraterrestrial environments. In this work, we present novel formulations for in-situ landmark tracking via detection and description. We utilize lightweight, computationally efficient neural network architectures designed for real-time execution on current-generation spacecraft flight processors. For landmark detection, we propose improved domain adaptation methods that enable the identification of celestial terrain features with distinct, cheaply acquired training data. Concurrently, for landmark description, we introduce a novel attention alignment formulation that learns robust feature representations that maintain correspondence despite significant landmark viewpoint variations. Together, these contributions form a unified system for landmark tracking that demonstrates superior performance compared to existing state-of-the-art techniques.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

航天任务 地标跟踪 神经网络 领域自适应
相关文章