cs.AI updates on arXiv.org 07月15日 12:24
Multiple Choice Learning of Low Rank Adapters for Language Modeling
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出LoRA-MCL训练方案,通过低秩适应(LoRA)和多项选择学习(MCL)解决语言模型中的模糊性问题,实现高效、多样化的句子续写。

arXiv:2507.10419v1 Announce Type: cross Abstract: We propose LoRA-MCL, a training scheme that extends next-token prediction in language models with a method designed to decode diverse, plausible sentence continuations at inference time. Traditional language modeling is an intrinsically ill-posed problem: given a context, multiple futures may be equally plausible. Our approach leverages Multiple Choice Learning (MCL) and the Winner-Takes-All (WTA) loss to efficiently handle ambiguity through Low-Rank Adaptation (LoRA). We provide a theoretical interpretation of applying Multiple Choice Learning to Language Modeling, assuming the data is generated from a mixture of distributions. To illustrate the proposed approach, we use data sampled from mixtures of Markov chains. We then demonstrate with extensive experiments on real-world visual and audio captioning tasks that our method achieves high diversity and relevance in generated outputs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语言模型 LoRA-MCL 多选学习 低秩适应 句子续写
相关文章